Silica Nanoparticles Permeabilize Lipid Bilayers
نویسندگان
چکیده
منابع مشابه
Phase Behavior and Structure Properties of Supported Lipid Monolayers and Bilayers in Interaction with Silica Nanoparticles
In this study we investigate silica nanoparticle (SiO2NP) effects on the structure and phase properties of supported lipid monolayers and bilayers, coupling surface pressure measurements, fluorescence microscopy and atomic force microscopy. SiO2-NPs typically in size range of 10nm to 100 nm in diameter are tested. Our results suggest first that lipid molecules organization depends to their natu...
متن کاملSilica nanoparticle supported lipid bilayers for gene delivery.
Silica nanoparticle supported cationic lipids can effectively bind plasmid DNAs and transfect mammalian cells with an efficiency that depends on both the particle size and lipid composition; here the gene delivery and expression process has been confirmed by confocal fluorescence microscopy.
متن کاملEffect of functionalized gold nanoparticles on floating lipid bilayers.
The development of novel nano-engineered materials poses important questions regarding the impact of these new materials on living systems. Possible adverse effects must be assessed in order to prevent risks for health and the environment. On the other hand, a thorough understanding of their interaction with biological systems might also result in the creation of novel biomedical applications. ...
متن کاملModeling vitreous silica bilayers
Theoretical modeling is presented for a freestanding vitreous silica bilayer which has recently been synthesized and characterized experimentally in landmark work. While such two-dimensional continuous random covalent networks should likely occur on energetic grounds, no synthetic pathway had been discovered previously. Here the bilayer is modeled using a computer assembly procedure initiated f...
متن کاملFormation of supported lipid bilayers on silica: relation to lipid phase transition temperature and liposome size.
DPPC liposomes ranging from 90 nm to 160 nm in diameter were prepared and used for studies of the formation of supported lipid membranes on silica (SiO2) at temperatures below and above the gel to liquid-crystalline phase transition temperature (Tm = 41 °C), and by applying temperature gradients through Tm. The main method was the quartz crystal microbalance with dissipation (QCM-D) technique. ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Biophysical Journal
سال: 2010
ISSN: 0006-3495
DOI: 10.1016/j.bpj.2009.12.2164